
dV/dt: Accelerating the Rate of

Progress towards Extreme

Scale Collaborative Science

Miron Livny (UW)

Bill Allcock (ANL)

Ewa Deelman (USC)

Douglas Thain (ND)

 Frank Wuerthwein (UCSD)

1

https://sites.google.com/site/acceleratingexascale

Funded by the Department of Energy

https://sites.google.com/site/acceleratingexascale
https://sites.google.com/site/acceleratingexascale

2

Challenges

 Estimate the application resource needs

 Allocate the needed resources

 Manage applications and resources during run, adapt

allocations, or intervene on behalf of the resources

Goal: “make it easier for scientists to execute large-scale

computational tasks that use the power of computing resources

they do not own to process data they did not collect with

applications they did not develop”

3

Experimental Foundation

 Real-world applications

– Sets of tasks and workflows managed by workflow

management systems (Pegasus and Makeflow)

 State of the art computing capabilities—Argonne Leadership

Computing Facility and Open Science Grid

 Campus resources at ND, UCSD and UW

 Commercial cloud services

 Experimentation from the point of view of a scientist: “submit

locally and compute globally”

 Pay attention to the cost involved in acquiring the resources and

the human effort involved in software and data deployment and

application management

– Automate as much as possible

4

Approach

4

Workload

Characterization

Resource

Allocation
Execution Monitoring

Workload Archive

dV/dt Execution Traces
Workload

Estimation

Monitoring Resource Usage

Execution Monitoring

dV/dt Execution Traces

6

HTC Monitoring

 Job wrappers that collect information about processes

– Runtime, peak disk usage, peak memory usage, CPU usage, etc.

 Mechanisms

– Polling (not accurate, low overhead)

– ptrace() system call interposition (accurate, high overhead)

– LD_PRELOAD library call interposition (accurate, low overhead)

 Kickstart (Pegasus) and resource-monitor (Makeflow)

Gideon Juve, et al., Practical Resource Monitoring for Robust High

Throughput Computing, University of Southern California, Technical Report

14-950, 2014.

 Polling LD_PRELOAD Ptrace (syscalls)

CPU 0.5% - 12% 0.5% - 5% < 0.2%

Memory 2% - 14% < 0.1% ~ 0%

I/O 2% - 20% 0% 0%

 Polling LD_PRELOAD Ptrace (syscalls)

CPU low low low

Memory low medium medium

I/O low low high

Error (Accuracy)

Overhead

7

HPC Monitoring (ALCF)

 Job information from scheduler (Cobalt)
– Use scheduler data for both scheduler and individual task data

– Job runtime, number of cores, user estimates, etc.

 I/O using Darshan
– Instrumentation automatically linked into codes at compile time

– Captures POSIX I/O, MPI I/O and some HDF5 and NetCDF
functions

– Amount read/written, time in I/O, files accessed, etc.

– Very low overhead in both time and memory

 Performance Counters using AutoPerf
– Using built-in hardware performance counters

– Also enabled at compile time

– Counters zeroed in MPI_Init, and reported in MPI_Finalize

– FLOPs, cache misses, etc.

– Users can take control of performance counters preventing this
from working

7

Building resource archives

8

Execution Monitoring

Workload Archive

dV/dt Execution Traces

Resources Archive

● The resource summary archive captures the information gathered by
our monitoring tools

● The archive is publicly readable at http://dvdt.crc.nd.edu.

o Build on top of the content management system Drupal and custom
PHP and python code

o Database backend running MySQL.

● Users of the archive can submit sets of resources summaries through a
web interface, or with a batch job using ssh keys for authentication

● The archive can be queried to produce task summaries that match
conditions, such as task name, monitoring tool used, and resource values
comparisons

Resources Archive - Workflows per User

Resources Archive - One Workflow

Workload Modeling and Characterization

Workload

Characterization
Workload Archive

dV/dt
Workload

Estimation

13

Context

13

• Methods assume that accurate estimations are available

• A successful workflow execution mainly depends on how tasks

are planned and executed

• We propose a method to estimate fine-grained task

characteristics online

Scheduling and
Resource Provisioning

Algorithms

Task Characteristics:
Runtime

Disk Space
Memory Consumption

14

Scientific Workflows

14

• Directed Acyclic Graph (DAG)

• Nodes denote tasks

• Edges denote task dependencies

Montage Workflow Epigenomics Workflow

Periodogram Workflow

...

...

...

aligment_to_reference

sort_sam

dedup

add_replace

realing_target_creator

indel_realing

haplotype_caller

genotype_gvcfs

combine_variants

select_variants_indel

filtering_indel

select_variants_snp

filtering_snp

merge_gvcfs

Rosetta Workflow

SoyKB Workflow

15

Workflow Execution Profiling

15

Task estimation could be based on mean values

Task estimation based on average may lead

to significant estimation errors

16

Based on Regression Trees
Built offline from historical data
analyses

1. If the data is already correlated
(e.g., input data and runtime, or input
data and output data), no clustering is
performed and predictions are done
based on the correlation ratio

2. If not, clustering is performed to
increase the probability of having
subsets where the data is correlated

3. If the clustering results in
correlated subsets, the ratio is used
to perform predictions (as in step 1)

4. If no correlation can be found after
clustering, the algorithm tries to
identify probability distributions that
would describe the subset

Task Estimation Process: Estimate task resource

needs based on input data size

16

17

• Based on the MAPE-K loop

• Task executions are constantly

monitored

• Estimated values are updated, and a

new prediction is performed

Online Estimation Process

17

18

• Trace analysis of 5 workflow applications

• Evaluate the accuracy of our online estimation process

• Offline: estimation based on a-priori knowledge

• Online-m: estimation based on the median value

• Online-p: estimation based on probability distributions

• Uses the Kolmogorov-Smirnov test (K-S test) to compare empirical data to

standard distributions

Experiment Conditions

18

19

Experimental Results: SoyKB Workflow

19

Online Process - Median

Avg. Runtime Error: 20%

Avg. I/O Write Error: 11%

Avg. Memory Error: 14%

Online Process –

Probability Distribution

Avg. Runtime Error: 13%

Avg. I/O Write Error: 8%

Avg. Memory Error: 11%

Offline Process

Avg. Runtime Error: 49%

Avg. I/O Write Error: 55%

Avg. Memory Error: 57%

Poor output data estimations

leads to a chain of estimation

errors in scientific workflows

Provisioning and Resource Allocation

Resource

Allocation
Execution Monitoring

dV/dt

21

Resource Allocation

• Tasks have different sizes (known at runtime) while

computation nodes have fixed sizes

• Resource allocation strategies

• One task per node

 Resources are underutilized

 Throughput is reduced

• Many tasks per node

 Resources are exhausted

 Jobs fail

 Throughput is reduced

Tasks Computation Nodes

21

22

General Approach

• Setting tasks

• What do we know?

 Maximum size?

 Size probability distribution?

 Empirical distribution?

 dV/dt Prediction information?

• Our approach

• Setting task sizes to reduce resource

waste

 Modeling of resource sizes (e.g., memory,

disk, or network bandwidth)

 Assumes the task size distribution is known

 Adapts to observed behavior

Success

Task of unknown size

Compute some task size

Run the task in a node

with the available space.

Monitor task, and kill it if

resources exceeded

Record result Record failure

Failure

Already max size

22

23

Synthetic Workload Experiment

• Exponential Distribution

• 5000 Tasks

• Memory according to an

exponential distribution

 min 10 MB, max 100 MB, average

20 MB

• Tasks run anywhere from 10 to 20

seconds

• 100 computation nodes available,

from ND Condor pool

• Each node with 4 cores and a limit

of 100 MB of memory

23

0

100

200

300

400

500

0 25 50 75
memory

ta
s
k
 c

o
u
n
t

24

(1.00) (0.43) (0.37)

100%

90.0%

10.0%

77.7%

19.0%

3.0%

0.33%

0.02%

0

m

m + 1s

m + 2s

m + 3s

m + 4s

m + 5s

m + 6s

m + 7s

m + 8s

al
lo

ca
ti

o
n

 s
iz

e

Example: One, Two and Multi-step allocations

24

normalized resource

units per task

(less is better)

multi-step, many-step

allocation, several

allocations are computed per

task. First allocation is

conservative. If one

allocation fails, another one

is tried

one-step (always max)

 two-step, each task first runs with some

computed allocation (aggressive). If the task fails because

of resources exhaustion, it is rerun with the maximum

allowed.

25

dV/dt Products

 Monitoring tools:

– kickstart and resource-monitor, support different monitoring

methods: ptrace system call interposition, library interposition,

polling, support different levels of monitoring information, workflow

system independent

 Workflow archive:

– Sets of various types workflows with detailed performance

information

– Ongoing data collection effort

 Methods:

– Online resource need estimation using regression trees and data

clustering techniques

– Dynamic resource allocation using runtime behavior information

25

26

Next Steps
 Enhance monitoring and modeling

– Extend modeling to HPC applications

– Investigate energy consumption

 Close the loop

– Use resource predictions for provisioning and scheduling

– Improve automation of entire loop

– Conduct end-to-end experiments with real workloads

 Productize tools

– Turn modeling software into a service

26

Workload

Characterization

Resource

Allocation
Execution Monitoring

Workload Archive

dV/dt Execution Traces
Workload

Estimation

27

Acknowledgements:

UWM: Miron Livny, Greg Thain

ANL: Bill Allcock

UND: Douglas Thain, Ben Tovar

UCSD: Frank Wuerthwein, James Letts

USC: Ewa Deelman, Gideon Juve, Rafael Ferreira da Silva

https://sites.google.com/site/acceleratingexascale

27

https://sites.google.com/site/acceleratingexascale

